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In order to extend the application field of the direct-methods S-FFT phase-

refinement algorithm to density functions with positive and negative peaks, the

equal-sign constraint was removed from its definition by combining �2 with an

appropriate density function mask [Rius & Frontera (2008). Acta Cryst. A64,

670–674]. This generalized algorithm (S2-FFT) was shown to be highly effective

for crystal structures with at least one moderate scatterer in the unit cell but less

effective when applied to structures with only light scatterers. To increase the

success rate in this second case, the mask has been improved and the

convergence rate of S2-FFT has been investigated. Finally, a closely related but

simpler phase-refinement function (Sm) combining � (instead of �2) with a new

mask is introduced. For simple cases at least this can also treat density peaks in

the absence of the equal-sign constraint.

1. Introduction

The moduli |G| of the structure factors of the squared density

distribution (�2) are not measurable quantities. For a crystal

structure with N equal scatterers in the unit cell following P1

space-group symmetry, |G| can be derived from the observed

|E| values with |G| = |E|/N1/2. However, this expression is not

valid if positive and negative scatterers are present, because

|G| and |E| are no longer proportional. To avoid this difficulty,

Rius & Frontera (2008) introduced the squared-shape density

function, i.e. �2(r) = �2(r)m(r), where r is an arbitrary point in

the unit cell and m(r) denotes a density function mask taking

the value 1 if �(r) > t�(�), �1 if �(r) < �t�(�) or 0 if |�(r)| �

t�(�) (t ’ 2.5). This mask causes the peaks in �2 to have the

same shapes as in �2 but preserves the signs they have in �. If

G2 represents the structure factors of �2, this means that |G2|

and |E| are proportional and the expression |G2| = |E|/N1/2 is

still applicable. The origin-free modulus sum function with the

|G2|’s as moduli takes the form (Rius & Frontera, 2008)

S2ð�Þ ¼
P

H

ðjG2;Hj � hjG2jiÞjG2;�Hð�Þj

¼ N�1=2
P

H

ðjEHj � hjEjiÞjG2;�Hð�Þj; ð1Þ

in which � are the collectivity of phases of the E’s and the

calculated |G2(�)|’s are obtained by Fourier inverting �2m.

The � phases can be optimized by maximizing S2 with the

direct methods S2-FFT algorithm. Tests of S2-FFT proved its

viability for solving crystal structures with positive and nega-

tive peaks (Rius & Frontera, 2008). For structures (without

negative scatterers) containing at least one moderate scatterer

in the unit cell, the number of correct solutions for S2- and S-

FFT was similar (Rius, 1993; Rius et al., 2007). However, for

crystal structures with only light scatterers, the success rate of

S2-FFT was much smaller, although the true solutions were

always characterized by the largest refined S2 value. This result

suggested that some improvements were still necessary.

2. An alternative mask for S2

To improve the phase-refinement algorithm based on S2, the

mask definition is modified according to

mðrÞ ¼ 1 if �ðrÞ> t�ð�Þ

¼ �1 if �ðrÞ< � t�ð�Þ

¼ a if j�ðrÞj � t�ð�Þ ð2Þ

with t’ 2.5 and where a is a random value between�1 and +1.

This mask differs from the previously published one in the

assignment of the random value a instead of zero for |�(r)| �

t�(�). As described in x4, this modification has been tested by

applying S2-FFT to different data sets with better results.

3. The Sm function

For completeness, a new phase-refinement function (Sm)

resulting from the simplest possible combination of � with an

appropriate mask m is also investigated. In this function, the

density function is modified according to the product

�m ¼ �m; ð3Þ

in which m takes the value

mðrÞ ¼ 1 if j�ðrÞj> t�ð�Þ

¼ a if j�ðrÞj � t�ð�Þ ð4Þ

with t ’ 2.5 and where a represents a random value between

�1 and +1. To simplify the nomenclature and since no



confusion is possible, no extra symbol is introduced for the

mask of Sm, i.e. depending on the context m will specify either

the mask of S2 or that of Sm. By applying Parseval’s theorem to

equation (3) and by considering that M = |M| exp(i�) are the

Fourier coefficients of m, the structure factors of �m in terms of

� are

EmHð�Þ ¼ jEmHð�Þj exp ið HÞ

¼ V�1
P

h

jEhjjMH�hj exp ið’h þ �H�hÞ; ð5Þ

where h in equation (5) refers to all reflections. In view of

equation (5), the origin-free modulus sum function can be

defined in terms of the |Em(�)| moduli in the same way that S

or S2 are defined in terms of |G(�)| or |G2(�)|, respectively,

i.e.

Sm ¼
P

H

ðjEHj � hjEjiÞjEmð�HÞð�Þj ð6Þ

¼
P

h

jE�hj expði’�hÞ½V
�1
P

H

ðjEHj � hjEjiÞ expði HÞMH�h�:

ð7Þ
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Figure 1
Flow diagram of the Sm-FFT phase-refinement procedure. The initial
phases (upper right corner) are combined with the experimental
amplitudes to compute the electron density � and the associated mask
m. The latter is used to compute the phases  of �m and also (broken
arrow) the product function �Q. The Fourier transform of �Q yields the
new structure-factor estimates.

Table 1
Application of the S2-, Sm- and S-FFT phase-refinement algorithms to single-crystal data from compounds containing at least one moderate scatterer.

nsol = number of correct solutions; ntotal = total number of trials; ncycle = number of allowed cycles per trial; dmin = minimum d-spacing (Å). The number of
correct solutions obtained with the old mask (Rius & Frontera, 2008) is given in parentheses in the S2-FFT column.

nsol/ntotal ncycle

Code Formula Z Space group dmin S2-FFT Sm-FFT S-FFT S2 Sm S

Jul1 C9H10N3Cl3 8 P41212 0.84 5(3)/25 4/25 3/25 40 40 40
Jul3 C14H22S2Si2 2 P21/n 0.76 10(8)/25 7/25 10/25 56 56 56
Jul4 C11Cl10 4 P21/n 0.70 6(6)/25 6/25 4/25 79 79 79
Jul5 C11HCl9 4 Pca21 0.70 25(22)/25 22/25 25/25 53 53 53
Hov1 Pr14Ni6Si11 4 C2/m 0.78 20(21)/25 25/25 22/25 66 66 66
Bobby C6H6O6NaCaN 4 P213 0.84 10(9)/25 18/25 7/25 21 21 21
Cds Cd4SO11.5H9 4 P63 0.63 25(24)/25 25/25 25/25 34 34 34
Fina13 C14H19N2O6ZnCl3 2 P1 0.84 25(25)/25 25/25 25/25 45 45 45
Cuimid C6H8N4ClCu 6 P3221 0.71 7(6)/25 11/25 5/25 47 47 47

References: Jul1: Julià et al. (1992); Jul3: Alemán et al. (1993); Jul4, Jul5: Carilla et al. (1995); Hov1: Hovestreydt et al. (1983); Bobby: Barnett & Uchtman (1979); Cds: Loüer et al. (2001);
Fina13: Pons et al. (2006); Cuimid: Clegg et al. (1984).

Figure 2
Application of the S2-FFT phase-refinement algorithm to intensity data
of Tval calculated (a) with 50% randomly assigned negative atomic
scattering factors and (b) with all atomic scattering factors of one of the
two symmetry-independent molecules made negative. Atoms with
negative refined densities are depicted in grey. The peak search was
performed on the Fourier map computed with the phase values supplied
by S2-FFT.



Note that in Sm the observed quantities are the experimental

|E|’s. According to its definition, Sm makes no use of the equal-

sign constraint, so it should be able to treat density functions

with positive and negative peaks. A flow diagram of the Sm-

FFT phase-refinement algorithm is shown in Fig. 1 and follows

the same scheme as for S-FFT and S2-FFT (Rius et al., 2007;

Rius & Frontera, 2008). Some test results showing the viability

of this phase-refinement algorithm, at least for simple cases,

are given in Tables 1, 2 and 3.

4. Discussion of the test calculations and conclusions

The results for the application of the sign-unconstrained S2-

and Sm-FFT phase-refinement algorithms are summarized in

Tables 1, 2 and 3. However, the discussion of these results is

limited to the S2-FFT algorithm, since there is currently no

firm indication that Sm-FFT is a significant improvement over

S2-FFT.

Table 1 shows the application to experimental X-ray data

for compounds with moderate scatterers in the unit cell. It can

be readily shown that the success rates of S2-FFT with old and

new masks and of S-FFT are similar for all data sets. Conse-

quently, the effectiveness of S2-FFT is preserved in this case.

Tables 2 and 3 include the corresponding results for

compounds with only light scatterers.

(1) Application to experimental intensity data from crystal

structures containing only light scatterers. Analysis of Table 2

indicates that the S2 function can solve all data sets and that

the introduction of the new mask in S2 approximately doubles

the number of correct solutions. However, when the perfor-

mances of S2- and S-FFT are compared, it is evident that the

number of successful trials is smaller for S2-FFT and that the

convergence rate of the latter is somewhat lower, requiring

about 2–3 times more refinement cycles than the S-FFT

algorithm. In the first test calculations of S2-FFT (Rius &

Frontera, 2008), which were performed with the direct-

methods program XLENS (Rius, 1993), the maximum number

of allowed refinement cycles (ncycle) corresponded to the

ideal values for S-FFT. Consequently, these values were in

general too low and prevented S2 from reaching convergence.

This explains, at least in part, the modest effectiveness of S2-

FFT pointed out by the authors. The application of S2 to Mbh2

data is a clear example of the effect of ncycle on nsol: with

S-FFT a 96% success rate is already reached for ncycle equal

to 40; however, with S2-FFT, the evolution of nsol (for a total

of 200 trials) as a function of ncycle (in parentheses) is 12.5%

(40), 28.5% (70), 66.0% (120) and 64.0% (210).

(2) Application to calculated intensity data from crystal

structures containing only light scatterers but with different

amounts of negative atomic scattering factors. The first tests

were performed on data calculated by randomly assigning

positive and negative scattering factors to the 54 non-H atoms

present in the asymmetric unit of Mbh2. As can be seen in

Table 3, the refinements of the different sets of starting

random phases by means of the S2 function were quite satis-

factory for the two resolution limits studied. The positive and

negative density peaks showed up in the Fourier map at the

expected positions.

A second more complex series of test calculations were

carried out with Tval. The data sets were calculated by

randomly (rnd) assigning negative form factors to 10% and

50% of the 160 symmetry-independent non-H atoms. As

shown in Table 3, the S2-FFT phase-refinement algorithm
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Table 2
Application of S2-, Sm- and S-FFT to X-ray single-crystal data for compounds containing only light scatterers.

nsol, ntotal, ncycle and dmin are as in Table 1. The number of correct solutions with the old mask is given in parentheses in the S2-FFT column.

nsol/ntotal ncycle

Code Formula Z Space group dmin S2-FFT Sm-FFT S-FFT S2 Sm S

Cortison C21H28O5 4 P212121 0.89 40(26)/2500 45/2500 260/2500 150 150 41
Tpala C28H42O7N4 2 P21 0.85 44(26)/400 22/200 120/400 150 150 62
Totc C33H36O6 6 P61 1.00 37(16)/200 111/200 140/200 100 100 50
Goldman2 C28H26 8 Cc 0.76 44(12)/200 164/200 196/200 120 120 72
Mbh2 C15H24O3 3 P1 0.85 95(39)/200 40/200 197/200 120 120 70
Tval C54H90N6O18 2 P1 0.85 77(41)/400 238/400 372/400 108 150 108

References: Cortison: Declercq et al. (1972); Tpala: Smith et al. (1981); Totc: Williams & Lawton (1975); Goldman2: Irngartinger et al. (1981); Mbh2: Poyser et al. (1986); Tval: Karle
(1975) and Smith et al. (1975).

Table 3
Application of S2- and Sm-FFT to calculated intensity data for crystal
structures containing only light scatterers but with different percentages
of negative atomic scattering factors in the unit cell.

The negative scatterers were assigned either randomly (rnd) or grouped in
molecules (grp). The number of correct solutions with the old mask is given in
parentheses in the S2-FFT column. nsol, ntotal, ncycle and dmin are as in Table
1.

Negative
nsol/ntotal ncycle

Code scattering factors dmin S2-FFT Sm-FFT S2 Sm

Mbh2(n) 50% rnd 0.94 100(83)/100 66/100 120 120
50% rnd 1.00 80(49)/100 100/100 120 120

Tval(n) 10% rnd 0.82 78(51)/100 0/100 150 150
50% rnd 0.82 74(44)/100 0/100 200 200
50% grp 0.82 92(90)/100 99/100 150 150

Tval(n) 10% rnd 1.00 53(33)/100 97/100 150 150
50% rnd 1.00 32(12)/150 0/200 200 200
50% grp 1.00 47(31)/100 47/100 150 150



produces the correct solutions in all cases. The high success

rates of S2 when the resolution limit is 0.82 Å are remarkable.

Fig. 2(a) reproduces the positive and negative density peaks in

the unit cell of Tval(n). To complement these test calculations

and to see whether the non-randomness in the assignment of

negative form factors has any influence on the refinement

process, the negative form factors were grouped (grp) into one

of the two symmetry-independent molecules of Tval. This

represents 50% of non-randomly distributed negative scat-

terers in the unit cell. Table 3 clearly indicates that, for most

trials, refinement with S2-FFT converged to the correct phase

values and developed the expected peak distributions in the

subsequent Fourier maps (Fig. 2b).

The global analysis of Table 3 indicates that the introduc-

tion of the new mask in S2-FFT increases the number of

solutions by a factor of approximately 1.6.

The principal conclusions to be drawn from the test calcu-

lations are:

(i) The S2-FFT algorithm is capable of refining starting

random phases independently of the presence or absence of

negative peaks in the density function.

(ii) The success rate of S2-FFT increases by a factor of

between 1.6 and 2 when the new mask is used for structures

containing only light scatterers.

(iii) The convergence rate of the S2-FFT phase-refinement

algorithm is lower than for S-FFT (approximately 2–3 times

lower for the studied test cases). This is the price that S2 has to

pay for not including the equal-sign constraint, especially

when dealing with data from compounds containing only light

scatterers.

(iv) The new and simpler Sm phase-refinement function can

be used to refine phases. The full possibilities of Sm are still to

be explored.
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